Maximum Likelihood Linear Regression (MLLR) for ASR Severity Based Adaptation to Help Dysarthric Speakers

نویسندگان

  • Bassam Ali Al-Qatab
  • Mumtaz Begum Mustafa
  • Siti Salwah Salim
چکیده

Automatic speech recognition (ASR) for dysarthric speakers is one of the most challenging research areas. The lack of corpus for dysarthric speakers makes it even more difficult. The speaker adaptation (SA) is an alternative solution to overcome the lack of dysarthric speech and enhance the performance of ASR. This paper introduces the Severity-based adaptation, using small amount of speech data, in which data from all participants in a given severity type will use for adaptation of that type. The adaptation is performed for two types of acoustic models, which are the Controlled Acoustic Model (CAM) developed using rich phonetic corpus, and Dysarthric Acoustic Model (DAM) that includes speech collected from dysarthric speakers suffering from variety level of severity. This paper compares two adaptation techniques for building ASR systems for dysarthric speakers, which are Maximum Likelihood Linear Regression (MLLR) and Constrained Maximum Likelihood Linear Regression (CMLLR). The result shows that the Word Recognition Accuracy (WRA) for the CAM outperformed DAM for both the Speaker Independent (SI) and Speaker Adaptation (SA). On the other hand, it was found that MLLR is outperformed the CMLLR for both Controlled Speaker Adaptation (CSA) and Dysarthric Speaker Adaptation (DSA). Keywords-Component, Automatic Speech Recognition, Dysarthric Speakers, Severity Adaptation, Maximum Likelihood Linear Regression, Constrained Maximum Likelihood Linear Regression.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Correction: Severity-Based Adaptation with Limited Data for ASR to Aid Dysarthric Speakers

Automatic speech recognition (ASR) is currently used in many assistive technologies, such as helping individuals with speech impairment in their communication ability. One challenge in ASR for speech-impaired individuals is the difficulty in obtaining a good speech database of impaired speakers for building an effective speech acoustic model. Because there are very few existing databases of imp...

متن کامل

Speaker clustered regression-class trees for MLLR adaptation

A speaker clustering algorithm is presented that is based on an eigenspace representation of Maximum Likelihood Linear Regression (MLLR) transformations and is used for training cluster-dependent regression-class trees for MLLR adaptation. It is shown that significant automatic speech recognition (ASR) system performance gains are possible by choosing the best regression-class tree structure fo...

متن کامل

Transformation Sharing Strategies for MLLR Speaker Adaptation

Transformation Sharing Strategies for MLLR Speaker Adaptation Arindam Mandal Chair of the Supervisory Committee: Professor Mari Ostendorf Electrical Engineering Maximum Likelihood Linear Regression (MLLR) estimates linear transformations of automatic speech recognition (ASR) parameters and has achieved significant performance improvements in speaker-independent ASR systems by adapting to target...

متن کامل

Longitudinal study of ASR performance on ageing voices

This paper presents the results of a longitudinal study of ASR performance on ageing voices. Experiments were conducted on the audio recordings of the proceedings of the Supreme Court Of The United States (SCOTUS). Results show that the Automatic Speech Recognition (ASR) Word Error Rates (WERs) for elderly voices are significantly higher than those of adult voices. The word error rate increases...

متن کامل

Robust ASR model adaptation by feature-based statistical data mapping

Automatic speech recognition (ASR) model adaptation is important to many real-life ASR applications due to the variability of speech. The differences of speaker, bandwidth, context, channel and et al. between speech databases of initial ASR models and application data can be major obstacles to the effectiveness of ASR models. ASR models, therefore, need to be adapted to the application environm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015